پایان نامه طراحی کنترلر PID برای سیستمهای چند متغیره غیرخطی به روش فازی
پایان نامه کنترل و هدایت موشک های خارج از جو
چکیده :در این سمینار، مسئله کنترل و هدایت موشکهای خارج از جو را بررسی خواهیم کرد . این فضاپیماها درمسیر بازگشت با اغتشاشاتی نظیر اغتشاشات اتمسفری مواجه میگردند که در طی مسیر آنها منجر به خطایفرود میگردد. لذا طراحی سیستم کنترل که بتواند بر این اغتشاشات فائق آید ضروری به نظر میرسد . دراین سمینار سعی بر این خواهد شد با استفاده از یک سیستم کنترلی این مسئله حل گردد .مقدمه :یکی از مسائل جالب و پیچیده در حوزه هوافضا، مسئله بازگشت به جو است . بسیاری از وسائل پرنده پدیدهی بازگشت به جو را تجربه نمیکنند . مطالعهی این پدیده تنها در خصوص آن دسته از اجسام پرندهموضوعیت دارد که از جو خارج شده و بازگشت به جو آنها به دلائلی اهمیت دارد .به جز شهاب سنگها، موشکهای بالستیک اولین اجسا می بودند که انسان مسئله ورود به جو آنها را تجربهنمود . هرچند تا قبل از سالهای 1870 در رابطه با موشکها، فعالیتهای تجربی و تئوریک مختلفی در اقضینقاط دنیا در جریان بود، اما فعالیتهای عمده از سال 1914ظاهر گردید و مشکلات فنی تحقق یافتنموشکهای نیرومند از میان برداشته شد. خصوصا از آغاز سال 1925 پیشرفتهای قابل تمجیدی در مطالعهوتحقیق موشکهای آزمایشی تحت رهبری فون براون در موسسه پرواز فضایی آلمان به دست آمد .طراحی سیستم کنترل بازگشت یکی از اصلی ترین حوزه های فناوری پروازهای فضایی را شکل میدهد.امروزه RV های پیشرفته نیازمند گونهای از الگوریتمهای کنترلی بوده که عملکرد آن را در حضور اغتشاشات،بهینه نموده و منجر به فرود یا اصابت به هدفی مشخص با ارضای قیودی در مسیر پرواز شوند. در ماموریتهایبازگشت از فضا، این الگوریتمها با نیاز به دوری از خروج مجدد از اتمسفر و بازگشت به فضا، پیچیده تر میشود. طراحی سیستم کنترل یک RV مصالحه ای بین ویژگی های مختلف طراحی سازه ای پرنده و هدفماموریت بوده، لذا طراح سیستم کنترل RV باید یک مهندس سیستم قادر به فهم پدیده های مختلف مرتبطباورود به جو، باشد .هدفدر این پروژه، مسئله بازگشت به جو فضاپیماهای بازگشتی را بررسی خواهیم کرد . این فضاپیماها درمسیر بازگشت با اغتشاشاتی نظیر اغتشاشات اتمسفری مواجه میگردند که در طی مسیر آنها منجر بهخطای فرود میگردد. لذا طراحی سیستم کنترل مسیر که بتواند بر این اغتشاشات فائق آید ضروری بهنظر میرسد . در این پروژه سعی بر این خواهد شد که با استفاده از یک سیستم کنترلی این مسئله حلگردد . فضاپیما وسیله نقلیهای است که برای خروج از جو کره زمین طراحی شدهاست. فضاپیماها بر دو نوع سرنشیندار و بیسرنشین هستند. فضاپیماها برای منظورهای گوناگونی طراحی م یشوند از جمله ماموریتهایمخابراتی، دیدبانی ماهوارهای کره زمین، هواشناسی، ناوبری، اکتشاف سیارات، گردشگری فضایی وجنگفضایی . هر شیء هنگام بازگشت به جو زمین یا هر سیاره دیگر برای اینکه با موفقیت فرو بنشیند، لازماست زاویه فرودی با شیب خیلی کم داشته باشد.در چنین فرودی پایینترین وبالاترین حدود به وسیله مسیر پرواز فضاپیما، میزان کاهش سرعت آن وگرمایش آیرودینامیکی ایجاد شده از برخورد شیء با لایههای اطراف، تعیین میشود.مسیر پرواز یک فضاپیما به هنگام بازگشت به زمین، تا اندازهای به نوع مداری که شیء برای رسیدن بهزمین طی میکند، بستگی دارد.این مسیر، مداری با اهمیت است، چرا که مشخص میکند فضاپیما در اولین برخوردش با جو زمین، با چهسرعتی مدار را طی میکند به. عنوان مثال، سرعت فضاپیماها به هنگام چرخش به دور زمین، 27360 تا28970 کیلومتر در ساعت است که معمولا با همین سرعت زیاد نیز وارد لایههای بالایی جو میشوند.حتی برخی فضاپیماها با سرعت فراتر از این نیز مدار زمین را میپیمایند و به جای قرارگرفتن در مداردایرهای، مدارهای سهمی را طی میکنند. این امر موجب سرعت بیشتر آنها به هنگام بازگشت به زمین می شود .
چکیده :
در این سمینار، مسئله کنترل و هدایت موشکهای خارج از جو را بررسی خواهیم کرد . این فضاپیماها درمسیر بازگشت با اغتشاشاتی نظیر اغتشاشات اتمسفری مواجه میگردند که در طی مسیر آنها منجر به خطایفرود میگردد. لذا طراحی سیستم کنترل که بتواند بر این اغتشاشات فائق آید ضروری به نظر میرسد . دراین سمینار سعی بر این خواهد شد با استفاده از یک سیستم کنترلی این مسئله حل گردد .
مقدمه :یکی از مسائل جالب و پیچیده در حوزه هوافضا، مسئله بازگشت به جو است . بسیاری از وسائل پرنده پدیدهی بازگشت به جو را تجربه نمیکنند . مطالعهی این پدیده تنها در خصوص آن دسته از اجسام پرندهموضوعیت دارد که از جو خارج شده و بازگشت به جو آنها به دلائلی اهمیت دارد .به جز شهاب سنگها، موشکهای بالستیک اولین اجسا می بودند که انسان مسئله ورود به جو آنها را تجربهنمود . هرچند تا قبل از سالهای 1870 در رابطه با موشکها، فعالیتهای تجربی و تئوریک مختلفی در اقضینقاط دنیا در جریان بود، اما فعالیتهای عمده از سال 1914ظاهر گردید و مشکلات فنی تحقق یافتنموشکهای نیرومند از میان برداشته شد. خصوصا از آغاز سال 1925 پیشرفتهای قابل تمجیدی در مطالعهوتحقیق موشکهای آزمایشی تحت رهبری فون براون در موسسه پرواز فضایی آلمان به دست آمد .طراحی سیستم کنترل بازگشت یکی از اصلی ترین حوزه های فناوری پروازهای فضایی را شکل میدهد.امروزه RV های پیشرفته نیازمند گونهای از الگوریتمهای کنترلی بوده که عملکرد آن را در حضور اغتشاشات،بهینه نموده و منجر به فرود یا اصابت به هدفی مشخص با ارضای قیودی در مسیر پرواز شوند. در ماموریتهایبازگشت از فضا، این الگوریتمها با نیاز به دوری از خروج مجدد از اتمسفر و بازگشت به فضا، پیچیده تر میشود. طراحی سیستم کنترل یک RV مصالحه ای بین ویژگی های مختلف طراحی سازه ای پرنده و هدفماموریت بوده، لذا طراح سیستم کنترل RV باید یک مهندس سیستم قادر به فهم پدیده های مختلف مرتبطباورود به جو، باشد .
هدفدر این پروژه، مسئله بازگشت به جو فضاپیماهای بازگشتی را بررسی خواهیم کرد . این فضاپیماها درمسیر بازگشت با اغتشاشاتی نظیر اغتشاشات اتمسفری مواجه میگردند که در طی مسیر آنها منجر بهخطای فرود میگردد. لذا طراحی سیستم کنترل مسیر که بتواند بر این اغتشاشات فائق آید ضروری بهنظر میرسد . در این پروژه سعی بر این خواهد شد که با استفاده از یک سیستم کنترلی این مسئله حلگردد . فضاپیما وسیله نقلیهای است که برای خروج از جو کره زمین طراحی شدهاست. فضاپیماها بر دو نوع سرنشیندار و بیسرنشین هستند. فضاپیماها برای منظورهای گوناگونی طراحی م یشوند از جمله ماموریتهایمخابراتی، دیدبانی ماهوارهای کره زمین، هواشناسی، ناوبری، اکتشاف سیارات، گردشگری فضایی وجنگفضایی . هر شیء هنگام بازگشت به جو زمین یا هر سیاره دیگر برای اینکه با موفقیت فرو بنشیند، لازماست زاویه فرودی با شیب خیلی کم داشته باشد.در چنین فرودی پایینترین وبالاترین حدود به وسیله مسیر پرواز فضاپیما، میزان کاهش سرعت آن وگرمایش آیرودینامیکی ایجاد شده از برخورد شیء با لایههای اطراف، تعیین میشود.مسیر پرواز یک فضاپیما به هنگام بازگشت به زمین، تا اندازهای به نوع مداری که شیء برای رسیدن بهزمین طی میکند، بستگی دارد.این مسیر، مداری با اهمیت است، چرا که مشخص میکند فضاپیما در اولین برخوردش با جو زمین، با چهسرعتی مدار را طی میکند به. عنوان مثال، سرعت فضاپیماها به هنگام چرخش به دور زمین، 27360 تا28970 کیلومتر در ساعت است که معمولا با همین سرعت زیاد نیز وارد لایههای بالایی جو میشوند.حتی برخی فضاپیماها با سرعت فراتر از این نیز مدار زمین را میپیمایند و به جای قرارگرفتن در مداردایرهای، مدارهای سهمی را طی میکنند. این امر موجب سرعت بیشتر آنها به هنگام بازگشت به زمین می شود .
پایان نامه کنترل و هدایت موشک های خارج از جو
در این سمینار، مسئله کنترل و هدایت موشکهای خارج از جو را بررسی خواهیم کرد . این فضاپیماها درمسیر بازگشت با اغتشاشاتی نظیر اغتشاشات اتمسفری مواجه میگردند که در طی مسیر آنها منجر به خطایفرود میگردد. لذا طراحی سیستم کنترل که بتواند بر این اغتشاشات فائق آید ضروری به نظر میرسد . دراین سمینار سعی بر این خواهد شد با استفاده از یک سیستم کنترلی این مسئله حل گردد .مقدمه :یکی از مسائل جالب و پیچیده در حوزه هوافضا، مسئله بازگشت به جو است . بسیاری از وسائل پرنده پدیدهی بازگشت به جو را تجربه نمیکنند . مطالعهی این پدیده تنها در خصوص آن دسته از اجسام پرندهموضوعیت دارد که از جو خارج شده و بازگشت به جو آنها به دلائلی اهمیت دارد .به جز شهاب سنگها، موشکهای بالستیک اولین اجسا می بودند که انسان مسئله ورود به جو آنها را تجربهنمود . هرچند تا قبل از سالهای 1870 در رابطه با موشکها، فعالیتهای تجربی و تئوریک مختلفی در اقضینقاط دنیا در جریان بود، اما فعالیتهای عمده از سال 1914ظاهر گردید و مشکلات فنی تحقق یافتنموشکهای نیرومند از میان برداشته شد. خصوصا از آغاز سال 1925 پیشرفتهای قابل تمجیدی در مطالعه و تحقیق موشکهای آزمایشی تحت رهبری فون براون در موسسه پرواز فضایی آلمان به دست آمد .طراحی سیستم کنترل بازگشت یکی از اصلی ترین حوزه های فناوری پروازهای فضایی را شکل میدهد.امروزه RV های پیشرفته نیازمند گونهای از الگوریتمهای کنترلی بوده که عملکرد آن را در حضور اغتشاشات،بهینه نموده و منجر به فرود یا اصابت به هدفی مشخص با ارضای قیودی در مسیر پرواز شوند. در ماموریتهایبازگشت از فضا، این الگوریتمها با نیاز به دوری از خروج مجدد از اتمسفر و بازگشت به فضا، پیچیده تر میشود. طراحی سیستم کنترل یک RV مصالحه ای بین ویژگی های مختلف طراحی سازه ای پرنده و هدفماموریت بوده، لذا طراح سیستم کنترل RV باید یک مهندس سیستم قادر به فهم پدیده های مختلف مرتبطباورود به جو، باشد .هدفدر این پروژه، مسئله بازگشت به جو فضاپیماهای بازگشتی را بررسی خواهیم کرد . این فضاپیماها درمسیر بازگشت با اغتشاشاتی نظیر اغتشاشات اتمسفری مواجه میگردند که در طی مسیر آنها منجر بهخطای فرود میگردد. لذا طراحی سیستم کنترل مسیر که بتواند بر این اغتشاشات فائق آید ضروری بهنظر میرسد . در این پروژه سعی بر این خواهد شد که با استفاده از یک سیستم کنترلی این مسئله حلگردد . فضاپیما وسیله نقلیهای است که برای خروج از جو کره زمین طراحی شدهاست. فضاپیماها بر دو نوع سرنشیندار و بیسرنشین هستند. فضاپیماها برای منظورهای گوناگونی طراحی م یشوند از جمله ماموریتهای مخابراتی، دیدبانی ماهوارهای کره زمین، هواشناسی، ناوبری، اکتشاف سیارات، گردشگری فضایی وجنگفضایی . هر شیء هنگام بازگشت به جو زمین یا هر سیاره دیگر برای اینکه با موفقیت فرو بنشیند، لازماست زاویه فرودی با شیب خیلی کم داشته باشد.در چنین فرودی پایینترین وبالاترین حدود به وسیله مسیر پرواز فضاپیما، میزان کاهش سرعت آن وگرمایش آیرودینامیکی ایجاد شده از برخورد شیء با لایه های اطراف، تعیین میشود.مسیر پرواز یک فضاپیما به هنگام بازگشت به زمین، تا اندازهای به نوع مداری که شیء برای رسیدن بهزمین طی میکند، بستگی دارد.این مسیر، مداری با اهمیت است، چرا که مشخص میکند فضاپیما در اولین برخوردش با جو زمین، با چه سرعتی مدار را طی میکند به. عنوان مثال، سرعت فضاپیماها به هنگام چرخش به دور زمین، 27360 تا28970 کیلومتر در ساعت است که معمولا با همین سرعت زیاد نیز وارد لایههای بالایی جو میشوند.حتی برخی فضاپیماها با سرعت فراتر از این نیز مدار زمین را میپیمایند و به جای قرارگرفتن در مداردایرهای، مدارهای سهمی را طی میکنند. این امر موجب سرعت بیشتر آنها به هنگام بازگشت به زمین می شود .
پایان نامه طراحی کنترلر PID برای سیستمهای چند متغیره غیرخطی به روش فازی |
![]() |
دسته بندی | برق ،الکترونیک و مخابرات |
فرمت فایل | |
حجم فایل | 4208 کیلو بایت |
تعداد صفحات فایل | 156 |
پایان نامه طراحی کنترلر PID برای سیستمهای چند متغیره غیرخطی به روش فازی
چکیده
در این پایان نامه یک نوع کنترلکننده فازی PID معرفی شده است. در این روش ابتدا کنترل کننده PID به وسیله یکی از روش های کلاسیک مانند زیگلر – نیکولز صراحی می شود. ممکن است پاسخی که از این روش بدست می آید مشخصه های مناسبی نداشته باشد، برای تصحیح این پاسخها کنترل کننده فازی PID پیشنهاد شده است. در این روش با استفاده از الگوریتم فازی بهره های تناسبی و انتگرالی حول مقادیر اولیه شان، در حین کار سیستم به گونه ای تغییر داده می شوند که مشخصه های پاسخ بهبود یابد. سپس این روش با استفاده از کنترل کننده های قطری به سیستم های چند متغیره تعمیم داده شده است. همچنین تغییراتی در قوانین فازی ایجاد شده است تا بتوان این روش را در مورد سیستم های ناپایدار نیز به کار برد. در نهایت کنترل کننده فازی PID به یک سیستم چند متغیره غیرخطی (سیستم تانک های چهارتایی) و یک سیستم چند متغیره غیرخطی ناپایدار) سیستم پاندول های معکوس) اعمال شده است. نتایج شبیه سازی ها کارایی این روش را در بهبود پاسخ ها نشان می دهد.
فصل اول
مقدمه
1-1- مقدمه
کنترل کننده های PID ابزاری استاندارد برای اتوماسیون صنعتی هستند. انعطاف پذیری این کنترل کننده، امکان استفاده از این نوع کنترل را در بسیاری از حالات فراهم می آورد. این کنترل کننده ها در کنترل Cascade و سایر صورت های کنترل قابل استفاده هستند. بسیاری از مسائل کنترل ساده را در صورتی که ملزومات عملکرد خیلی بالا نباشد، می توان با کنترل PID به خوبی حل کرد. الگوریتم PID به صورت رگولاتورهای استاندارد برای کنترل فرآیندها، مجتمع شده است. یک صورت این الگوریتم به شکل زیر است:
که در آن u متغیر کنترل و e خطای تعریف شد ه به صورت e=ysp-y است که در آن ysp مقدار مرجع و y خروجی فرآیند می باشد. سیگنال کنترل جمع سه ترم می باشد. ترم P (که ضریبی از خطا است)، ترم I (که ضریبی از انتگرال خطاست)، و ترم D که (ضریبی از مشتق خطا می باشد). پارامترهای کنترل کننده بهره تناسبی K، زمان انتگرال Ti و زمان مشتق TD می باشند. وظیفه اصلی عمل انتگرال این است که اطمینان حاصل کنیم که خروجی فرایند در حالت دائم مقدار مرجع را دنبال می کند. هدف از عمل مشتق نیز افزایش پایداری سیستم حلقه بسته می باشد.
با وجود اینکه تئوری های پیشرفته ای در علم کنترل به وجود آمده است ولی کنترل کننده [1] PID هنوز در اکثر فرآیندهای کنترلی به کار می رود. دلیل این امر سادگی این کنترل کننده، آشنایی افراد با آن، سهولت دسترسی به آن و کارایی در مجموع خوب این کنترل کننده می باشد. البته این کنترل کننده در بعضی کاربردها کارایی کاملا خوبی ارائه نمی کند ولی در بسیاری از کاربردهای معمول، کارایی بسیار مناسبی دارد. به هرحال هرچند کارایی کنترل کننده PID در کاربردهای صنعتی کاملاً ایده آل نیست، در حال حاضر این کنترل کننده یکی از پر کاربردترین کنترل کننده ها در فرآیندهای صنعتی می باشد.
با توجه به تعریف سیستم کنترل، طراحی سیستم های کنترل را در حالت کلی می توان به شش بخش تقسیم نمود:
1- تعریف و فرمول بندی اهداف کنترل، در حوزه زمان و یا فرکانس.
2- انتخاب مدل سیستم و نوع آن (خطی، غیرخطی و…)
3- انتخاب ساختار کنترل
4- طراحی کنترل کننده شامل انتخاب روش طراحی (PID، LOG و…)
5- شبیه سازی و آزمایش به منظور ارزیابی سیستم حلقه بسته
6- اجرای عمل کنترل کننده ها، حسگرها و محرک ها در سیستم واقعی
کنترل در سیستم های چند متغیره به دو بخش کنترل متمرکز که به وسیله یک کنترل کننده چند ورودی – چند خروجی صورت می گیرد و دیگری کنترل غیرمتمرکز که توسط چند کنترل کننده یک ورودی – یک خروجی انجام می گیرد، تقسیم می شود.