پایان نامه جبران سازی اثر تزویج متقابل المان ها در آنتن های آرایه ای تطبیقی
پایان نامه جبران سازی اثر تزویج متقابل المان ها در آنتن های آرایه ای تطبیقی |
![]() |
دسته بندی | برق ،الکترونیک و مخابرات |
فرمت فایل | |
حجم فایل | 9822 کیلو بایت |
تعداد صفحات فایل | 171 |
پایان نامه جبران سازی اثر تزویج متقابل المان ها در آنتن های آرایه ای تطبیقی
چکیده:
عملکرد آنتن آرایه ای تطبیقی توسط اعوجاج فاز و دامنه ایجاد شده در مسیر سیگنال دریافتی دچار اختلال شده و قابلیت ردگیری سیگنال دریافتی از بین می رود. المان آرایه به عنوان یک عنصر موثر در ایجاد این اعوجاج می بایستی از جهات مختلف مورد بهینه سازی قرار گیرد. تغییر مکان محل تغذیه یک آرایه با المان پچ باعث دستیابی به بهره بالا و فرکانس رزونانس مناسب می گردد. اثر بهینه سازی مکان تغذیه آنتن موجب تغییرات قابل ملاحظه ای در ماتریس تزویج به صورت اعوجاج دامنه ای و فازی می شود. اثر تزویج متقابل هم باعث کم شدن عمق صفرها و هم جابجایی محل آن ها در الگوی تابشی آرایه می شود که در سیستم های تطبیقی سیگنال به نویز خروجی کاهش می یابد و یا اینکه الگوی فرستندگی ایده آل آرایه تغییر می کند و دچار اعوجاج می شود از آنجا که روش های پردازش سیگنال در سیستم های آرایه هوشمند با فرض صفر بودن تزویج متقابل آرایه فرمول بندی می شود لذا در تحقق عملی این سیستم، اثر تزویج متقابل بین عناصر آرایه، قابلیت سیستم آنتن های هوشمند را کاهش می دهد.
در این پایان نامه هدف بررسی اثر موقعیت نقطه تغذیه و تزویج متقابل در طراحی و عملکرد آنتن های هوشمند می باشد و ارائه روشی برای جبران سازی اثر تزویج متقابل در عملکرد تطبیقی سیستم های هوشمند است ابتدا اثر موقعیت نقطه تغذیه در آنتن های مایکرواستریپ بررسی شده و تزویج متقابل در آرایه های نامحدود محاسبه و شبیه سازی می شود. سپس روشی برای جبران سازی اثر تزویج متقابل در آرایه های محدود با استفاده از ماتریس پراکندگی در آرایه، مطرح می شود. سپس با توجه به روابط مشخص می شود که چه ضرائب وزنی (دامنه و فازی) را باید به هر المان اعمال کنیم تا جبران سازی صورت گیرد. بدین منظور دو آنتن آرایه ای میکرواستریپ پج با استفاده از نرم افزای HFSS شبیه سازی می شوند و اثر موقعیت نقطه تغذیه و تزویج متقابل در کیفیت طراحی و پرتوهای تشعشعی آن در عملکرد تطبیقی آنتن بررسی شده و سپس جبران سازی به وسیله روش پیشنهاد شده بر روی آن ها انجام می شود.
مقایسه نتایج حاصل از شبیه سازی و کارهای انجام پذیرفته، تطابق خوبی برای روش پیشنهادی نشان می دهد.
مقدمه:
یک سیستم آنتن هوشمند شامل چندین آنتن است که با یک پردازشگر سیگنال مجتمع شده است تا بتواند از قابلیت هر دو دسته برای به دست آوردن یک الگوی گیرندگی و یا فرستندگی بهینه با توجه به سیگنال دریافتی استفاده نماید برای درک مفهوم کارکرد سیستم آنتن تطبیقی به فکر یک مثال تجربی می پردازیم اگر چشمانمان را ببندیم و با یک نفر که در داخل یک اتاق در حال حرکت است صحبت کنیم مشاهده خواهیم کرد که بدون نگاه کردن به شخص می توان موقعیت او را تشخیص داد چرا که: اولا به وسیله دو گیرنده صوتی گوش سیگنال های صحبت شخص متقابل را می توانیم دریافت کنیم. ثانیا صدا به هر گوش در دو زمان مختلف می رسد و ثالثا: مغز ما که یک پردازشگر ویژه است محاسبات پیچیده ای انجام می دهد تا اطلاعات مربوط به مکان شخص سخنگو را به دست آورد. مغز ما همچنین شدت سیگنال های رسیده به هر گوش را باهم جمع می کند به قسمتی که صدای رسیده در یک راستای مشخص را به اندازه دو برابر قوی تر از هر صدای دیگر می شنود. سیستم های آنتن تطبیقی نیز به طور مشابه ای عمل می کنند که البته می توان از تعدادی بیش از 2 آنتن استفاده نمود و لذا دقیق تر عمل کرد. چون آنتن ها هم می شوند و هم صحبت می کنند یک سیستم آنتن هوشمند می توان سیگنال ها را همچنین در راستای مشخصی بفرستند (مثلا همان راستایی که دریافت کرده است) البته باید توجه داشت که چون فرکانس گیرندگی با فرکانس فرستندگی معمولا متفاوت است، خواص الکترونیکی آرایه آنتن ها عوض می شود.
بنابراین سیستم آنتن تطبیقی نه تنها می تواند 8 و 10 و یا 12 بار قوی تر بشنود بلکه به همان مقدار می تواند قوی تر و در راستای مشخص صحبت بکند. یک گام جلوتر، اگر مثلا شخص دیگری نیز با ما مشغول صحبت شود پردازشگر سیگنال درونیمان می تواند نویز ناخواسته را حذف کرده و به طور دلخواه روی شخص سخنگو تمرکز پیدا بکند و در هر لحظه با یک نفر صحبت کند. بنابراین سیستم های آرایه ای تطبیقی پیشرفته دارای قابلیت مشابهی برای تمیز دادن سیگنال دلخواه یا مورد نظر از سیگنال های غیر دلخواه هستند. در حقیقت این آنتن ها نیستند که هوشمند اند بلکه سیستم های آنتن ها هستند که هوشمندانه عمل می کنند. به طور کلی سیستم آنتن هوشمند واقع در ایستگاه های پایه مخابرات سیار (Base Station) یک سیستم پردازشگر سیگنال دیجیتال را با یک آرایه ترکیب کرده و به طور تطبیقی در راستاهای مختلف دریافت و ارسال پیغام می کند. به عبارت دیگر با توجه به سیگنال دریافتی می تواند الگوی تشعشعی آنتن را عوض کند که این پدیده باعث افزایش قابل ملاحظه ای در مشخصه های کارایی سیستم سیار می شود. پایه آنتن های هوشمند به دهه هفتاد برمی گردد آنتن های هوشمند، آرایه های فاز داده شده (Phased Array) دسترسی چندگانه با تقسیم بندی فضایی (Space Division Multiple access)، پردازش فضایی (Spatial Processing) سیستم های آنتن تطبیقی (Adaptive Antenna Systems) و لغات دیگر از مفاهیم تکنولوژی سیستم های آنتن هوشمند است که تا به حال استفاده شده است. سیستم های آنتن هوشمند به طور معمولی به دو دسته تقسیم بندی می شوند:
1- سیستم سوئیچ شده.
2- سیستم های آرایه تطبیقی.
پایان نامه مکان یابی و نقشه سازی همزمان با استفاده از ترکیب اطلاعات سنسوری
پایان نامه مکان یابی و نقشه سازی همزمان با استفاده از ترکیب اطلاعات سنسوری |
![]() |
دسته بندی | برق ،الکترونیک و مخابرات |
فرمت فایل | |
حجم فایل | 1068 کیلو بایت |
تعداد صفحات فایل | 88 |
پایان نامه مکان یابی و نقشه سازی همزمان با استفاده از ترکیب اطلاعات سنسوری
چکیده
یکی از مهمترین مسائل مطرح در ربات های متحرک مسئله مکان یابی می باشد. مکان یابی به معنای محاسبه موقعیت یک شی متحرک در محیط است. مکان یابی را می توان به صورت مطلق و نسبی انجام داد. یکی از روش های مکان یابی نسبی استفاده از بینایی ماشین می باشد. در این روش تصاویر از طریق دوربین نصب شده زیر ربات اخذ شده و در الگوریتم Optical Flow میزان حرکت بین دو فریم محاسبه می گردد. الگوریتم Optical Flow بدلیل کمبود تعداد معادلات نسبت به پارامتر های دو بعدی مورد نیاز حرکت به روش های کمکی نیاز داشته که در اینجا از روش Lucas & Kanade استفاده شده است. اطلاعات بدست آمده در این مرحله به عنوان داده های مسافت پیمایی بصری در نظر گرفته می شوند. سپس داده های بدست آمده در نمودار تشخیص نوع حرکت قرار داده می شوند. نمودار تشخیص نوع حرکت از بررسی سینماتیک ربات بکار گرفته شده و موقعیت دوربین بر روی ربات بدست می آید. داده های بدست آمده پس از اعمال در فیلتر کالمن برای نقشه سازی استفاده می شوند. پس از رسم نقشه، مکان یابی نسبت به مبداء انجام می گردد. الگوریتم پیشنهادی بر روی یک سیستم واقعی متشکل از یک ربات امدادگر و یک دوربین CCD پیاده سازی گردید. نتایج حاصل از مکان یابی ربات با این روش کارائی مناسب آن را برای کاربردهای رباتیک تائید می کند.
مقدمه
یکی مهمترین مسائل در ربات های متحرک مکان یابی و نقشه سازی می باشد. روش های مانند بکار گیری انکدر های افزایشی و استفاده از سنسور های بر پایه اینرسی جهت انجام مکان یابی ارائه شده که هر کدام به نحوی دارای کم و کاستی و مزایایی نیز می باشند. همچنین به تازگی از بینایی ماشین و پردازش تصویر به عنوان یکی از راه های بدون تماس جهت اندازه گیری سرعت ارائه شده که در حال تکامل بوده و روش های متفاوتی نیز در این زمینه ارائه شده است که بهتر است ترکیبی از این روش ها جهت بدست آوردن نتایج مطلوب بکار گرفته شود. در فصل اول کلیاتی از مسئله مکان یابی و انواع روش های مکان یابی ارائه شده که در آن پیش زمینه ای جهت مطالب فصل های بعد ارائه گردیده است. در فصل دوم نیز کار های مرتبط معرفی شده و برخی از روش هایی که از Optical Flow برای مکان یابی ربات ها استفاده می کنند پرداخته شده است. همچنین در مورد سینماتیک ربات های متحرک بررسی انجام گرفته و در نهایت سینماتیک یک ربات دیفرانسیلی دو چرخ که یکی از متداول ترین ربات های بکار گرفته شده در زمینه ربات های هوشمند است مورد بررسی قرار گرفته است. در فصل سوم تئوری کار های انجام گرفته شده ارائه می گردد. روش هایی که جهت بدست آوردن میزان جابجایی بین دو فریم تصویر ارسالی بکار می روند بررسی شده و روش Lucas & Kanade نیز انتخاب شده است. همچنین با استفاده از الگوریتم گوشه یابی در تصویر، روش Lucas & Kanade را بهینه کرده و کار آیی آن را جهت کاربرد در مکان یابی مناسب تر کرده ایم. در نهایت خروجی الگوریتم بهینه شده بصورت میدانی ارائه شده که با استفاده از نمودار توزیع, خطاهای آن به حد اقل رسیده و خروجی برآیند آن در نمودار حوزه بندی شده, تشخیص نوع حرکت اعمال شده است. از فیلتر کالمن نیز برای حذف نویز های موجود و حرکت های ناگهانی که ناشی از خطا های الگوریتم بوده استفاده شده است. داده های بدست آمده جهت نقشه سازی استفاده شده و پس از نقشه سازی مجددا مکان یابی نسبت به مبداء انجام می گیرد. در فصل چهارم الگوریتم ارائه شده مورد آزمایش واقعی قرار گرفته و نتایج آن بررسی شده است. همچنین روش پیاده سازی و عوامل موثر در آن مورد بررسی قرار گرفته است. با بررسی عوامل موثر , خطا های موجود در سیستم بدست آمده و پس از مدل سازی مناسب تا حد امکان جبران سازی شده و خطا به حد اقل کاهش پیدا کرده است. در فصل پنجم نتیجه گیری ای از روش بدست آمده , ارائه شده و کار هایی که می توان در راستای این پروژه ادامه داد نیز بصورت کلی مورد بررسی قرار گرفته است. همچنین در قسمت پیوست ساختار کلی برنامه نوشته شده جهت پیاده سازی الگوریتم مورد بررسی اجمالی قرار گرفته است. علاوه بر آن مشخصات دوربین که مهمترین قسمت سخت افزاری جهت پیاده سازی محسوب می شود نیز مورد بررسی قرار داده ایم. در نهایت نقشه های بدست آمده از مسیر های حرکتی نیز ارائه شده است. باشد که کار های انجام شده در راستای پیشرفت زمینه رباتیک مورد استفاده قرار بگیرند.
پایان نامه طراحی وبهینه سازی کوپلر حلقوی میکرواستریپ
پایان نامه طراحی وبهینه سازی کوپلر حلقوی میکرواستریپ |
![]() |
دسته بندی | برق ،الکترونیک و مخابرات |
فرمت فایل | |
حجم فایل | 8249 کیلو بایت |
تعداد صفحات فایل | 146 |
پایان نامه طراحی وبهینه سازی کوپلر حلقوی میکرواستریپ
فصل اول
1-1) مقدمه
مایکرویوها امواج الکترومغناطیسی هستند که محدوده فرکانسی آنها تقریبا از 300 مگاهرتز تا 1000 گیگاهرتز می باشد. بیشتر کاربردهای صنعت مایکروویو در محدوده 1 تا 40 گیگاهرتز است. اینگونه امواج چون طول موج بسیار کوتاهی در محیط انتشار دارند امواج مایکروویو یا ریزموج نامیده می شوند.
طیف الکترومغناطیس در انتهای پایین ناحیه مایکروویو مرز بین فرکانس های رادیو و تلویزیون است در حالی که انتهای بالای آن همجوار به طیف های نوری و مادون قرمز می باشد.
مایکروویو در جامعه مدرن ما کاربردهای فراوانی دارد. از فرستادن سیگنال تلویزیون از روی اقیانوس تا پختن غذا در چند دقیقه را شامل می شود. از امواج مغناطیسی به دلیل بالا بودن فرکانس در انتقال اطلاعات آنالوگ و دیجیتال استفاده های زیادی می شود چرا که بالا بودن فرکانس آنها ظرفیت انتقال اطلاعات را در سیستم هایی که از امواج مایکروویو برای انتقال اطلاعات استفاده می کنند افزایش می دهد. توانایی تمرکز امواج رادیویی، تابعی از اندازه آنتن و طول موج عملکرد است. برای یک آنتن با اندازه معین توانایی تمرکز با کم نمودن طول موج بهبود می یابد. برای مثال عرض شعاع رادیویی یک آنتن سهموی به قطر یک متر تقریبا 50 درجه در 1GHZ است در حالی که این عرض فقط 5 درجه در 10GHZ است. برای راندمان مخابرات بین دو نقطه، این نکته مهمی است که سیگنال فرستنده با تمرکز زیاد به طرف آنتن گیرنده جهت گیری کند.
یک سیستم انتقال که در فرکانس 60MHZ کار می کند، اگر پهنای باند آن 6 درصد فرکانس مرکزی باشد، فقط می تواند یک کانال تلویزیون را انتقال دهد، در حالی که اگر همان سیستم بتواند در فرکانس 60GHZ کار کند، با همان درصد پهنای باند، می تواند تقریبا 100 کانال تلویزیونی انتقال دهد.
همین قابلیت های امواج مایکروویو موجب شده است تا در دنیای روبه رشد امروز، که هر روز نیاز به افزایش حجم اطلاعات می باشد، بتوان جوابگوی نیاز وسیع جامعه بشری به ارتباطات بود.
سیستم های رادار، کاربرد اصلی دیگر مایکروویو می باشد. از آنها به عنوان آشکار سازی هواپیما، هدایت موشک های ماورای صوت، مشاهده و ردگیری، هواشناسی و کنترل ترافیک هواپیما در فرودگاه ها استفاده می شود.
2-1) قطعات مایکروویوی
تنوع عظیمی از قطعات جهت استفاده برای کنترل و سیستم تولید سیگنال مایکروویوی وجود دارد. اتصالات هایبرید از جمله این قطعات مایکروویوی هستند.
یک اتصال هایبرید 180 درجه، یک چهار پورتی است که اختلاف فاز بین دو پورت خروجی آن 180 درجه می باشد.
سیگنال تابش از پورت 1 به دو قسمت هم فاز در پورت های 2 و 3 تقسیم می شوند و در پورت 4 سیگنالی نخواهیم داشت که اصطلاحا این پورت ایزوله است. حال اگر سیگنال تابش به پورت 4 اعمال شود به دو قسمت با اختلاف فاز 180 درجه در پورت های 2 و 3 تقسیم خواهد شد و در این حالت پورت 1 ایزوله خواهد بود.
از این قطعه می توان به عنوان جمع کننده استفاده کرد. مجموع سیگنال های تابشی به پورت های 2 و 3 در پورت 1 و تفاضل آنها در پورت 4 خواهد بود از اینروست که گاهی پورت های 1 و 4 را به عنوان پورت های مجموع (E) و تفاضل (^) می نامند.
یک اتصال هایبرید 180 درجه به چند صورت قابل ساخت است.
1- کوپلر حلوقوی جهت دار که به کمک خطوط مایکرواستریپ یا استریپ لاین قابل ساخت هستند.
2- به صورت خط کوپل شده باریک شونده.
3- به صورت هایبرید با اتصال موجبری یا اتصال T جادویی.
اتصال هایبرید نوع اول یا کوپلر حلقوی جهت دار کاربردهای بسیار وسیعی در رادار و مخابرات باند وسیع دارد و در ساخت قطعاتی همچون مخلوط کننده ها، تقسیم توان برای آنتن های آرایه ای میکرواستریپ، تقویت کننده های متعادل، تمیز دهنده فرکانسی، شیفت دهنده های فازی، مدولاتورها و غیره کاربرد دارد.
اما با توجه به مقدار تغییرات دامنه و فاز، VSWR و ایزولاسیون پورت ها، پهنای باند یک کوپلر حلقوی حدود 20 تا 25 درصد فرکانس مرکزی است.
مطالعات و تحقیقات زیادی در مورد افزایش پهنای باند کوپلرهای حلقوی انجام گرفته است. در این پروژه تعدادی از مقالات و تحقیقات انجام شده در زمینه کوپلرهای حلقوی همچنین روش هایی که برای افزایش پهنای باند مؤثر این قطعه و افزایش ایزولاسیون پیشنهاد شده را بررسی خواهیم کرد، در فصل پنجم طرح تقسیم کننده توان با پهنای باند وسیع را معرفی و تحلیل می کنیم و مشخصات یک تقسیم کننده توان پنج پورتی را بیان می کنیم، برای تحلیل مشخصات یک تقسیم کننده توان حلقوی از یک برنامه کامپیوتر که به زبان matlab نوشته شده است، بهره خواهیم گرفت.
پایان نامه طراحی و شبیه سازی تقویت کننده های عملیاتی با توان و ولتاژ پایین و هدایت انتقالی ثابت
پایان نامه طراحی و شبیه سازی تقویت کننده های عملیاتی با توان و ولتاژ پایین و هدایت انتقالی ثابت |
![]() |
دسته بندی | برق ،الکترونیک و مخابرات |
فرمت فایل | |
حجم فایل | 1360 کیلو بایت |
تعداد صفحات فایل | 153 |
پایان نامه طراحی و شبیه سازی تقویت کننده های عملیاتی با توان و ولتاژ پایین و هدایت انتقالی ثابت
چکیده
تقویت کننده عملیاتی یک بلوک ساختاری بنیادی در طراحی مدار مجتمع آنالوگ است . برای ولتاژهای تغذیه پایین، ولتاژ ورودی مد مش ترک و ولتاژ خروجی تقویت کننده های عملیاتی همیشه نیازمند آن هستند که توانایی نوسان از خط تغذیه منفی تا مثبت را داشته باشند. یعنی Rail-to-Rail.
اکثر طراحی های متعارف برای رسیدن به محدوده Rail-to-Rail از زوج های تفاضلی مکمل استفاده میکنند. در ساختارهای زوج تفاضلی مکمل، هنگامی که هر دو زوج تفاضلی فعال هستند، تغییرات هدایت انتقالی به میزان 100% خواهد شد که این تغییرات نامطلوب استفاده از روش های هدایت انتقالی ثابت را تحمیل می کند.
در مدارهای دیجیتال، ولتاژهای پایین تر منجر به مصرف توان پایین تر می شوند. اما، کاهش ولتاژ تغذیه در مدارهای آنالوگ تاثیر چندانی در کاهش توان ندارد . به همین منظور برای رسیدن به توان پایین در مدارهای آنالوگ باید از روش ها و تکنیک های توان پایین استفاده کرد. در اکثر طراحی ها برای داشتن مصرف توان پایین، مدارها را در ناحیه زیر آستانه بایاس میکنند.
در این پایان نامه، یک تقویت کننده عملیاتی ولتاژ پایین، توان پایین با هدایت انتقالی ثابت و محدوده ورودی، خروجی Rail-to-Rail پیشنهاد خواهد شد.
طبقه ورودی تقویت کننده عملیاتی برای به وجود آوردن محدوده Rail-to-Rail از زوج های تفاضلی مکمل استفاده شده است، عملیات هدایت انتقالی ثابت توسط یک آینه جریان یک برابر و یک کلید جریان میسر می گردد.
به منظور رسیدن به محدوده خروجی Rail-to-Rail ترانزیستورهای خروجی در ترکیب سورس مشترک متصل شده اند. با بایاس ترانزیستورهای تقویت کننده در ناحیه زیرآستانه هدف توان پایین، ولتاژ پایین نیز برآورده شده است. در این پایان نامه از جبران سازی فرکانسی میلر کسکد استفاده شده که در مقایسه با جبران سازی میلر کلاسیک، با مصرف توان کمتر پهنای باند بهتری را ارائه میدهد.
مقدمه
در فصل اول پایان نامه، تمامی مطا لب مورد نیاز برای فهم تقویت کننده های عملیاتی ولتاژ و توان پایین ارائه میشود. اگر چه این مطالب اساساً برای اشخاص مبتدی حائز اهمیت است، اما بخشی از این فصل برای افرادی که مطالعه قبلی پیرامون فصل اولیه دارند نیز جالب و خواندنی است.
در فصل دوم پایان نامه، مط البی پیرامون طبقه ورودی تقویت کننده عملیاتی بیان می گردد. در این راستا، مفاهیمی که ارتباط مستقیم با طبقه ورودی دارد، مطرح می شود . طبقات ورودی مکمل Rail-to-Rail ساختارهای ورودی در محیط ولتاژ پایین، مزایا و معایب هر کدام از این روشها در این فصل معرفی میگردد.
در فصل سوم پایان نامه، دلایل نیاز به هدایت انتقالی ثابت معرفی می گردد . در این فصل، روش های کاهش تغییرات هدایت انتقالی به تفصیل مورد بررسی قرار گرفته است.
در فصل چهارم پایان نامه ، دو روش افزایش بهره تقویت کننده عملیاتی بررسی می شود. در این فصل، هم چنین مروری بر ساختارهای کسکد در طراحی ولتاژ پایین صورت گرفته است.
در فصل پنجم پایان نامه ، طبقه خروجی سورس مشترک، کلاس AB ،AB پیش خور و پس خور، روشهای جبران فرکانسی بررسی می گردد، که روش جبران سازی میلر کسکد بیان شده در این فصل گزینه مناسبی برای داشتن پهنای باند مناسب در طراحی های ولتاژ و توان پایین می باشد.
پس از بیان کلیه مطالب و مفاهیم مورد نیاز و مشکلات طراحی یک تقویت کننده عملیاتی با ولتاژ و توان پایین و هدایت انتقالی ثابت و با محدوده ورودی و خروجی Rail-to-Rail در فصل های اول تا پنجم، تقویت کننده عملیاتی پیشنهاد شده در این پایان نامه در فصل ششم مطرح شده است. در این فصل طبقه ورودی و خروجی و جبران سازی فرکانسی طراحی معرفی شده به تفکیک مورد بررسی قرار گرفته است. اندازه و مقدار اجزاء مورد استفاده در طراحی و نتایج شبیه سازی ارائه شده است . هم چنین در این فصل مق ایسه ای بین نتایج طراحی تقویت کننده عملیاتی پیشنهاد شده و مرجع [ 26 ] صورت گرفته است.
در فصل هفتم پایان نامه ، نتیجه گیری و پیشنهادات لازم برای افراد علاقه مند به پیگیری موضوع این پایان نامه بیان شده است.
این پایان نامه دارای یک پیوست میباشد که شامل پارامترهای مدل Hspice است.
پایان نامه کنترل بهینه فیدبک حالت نوعی از آونگ وارون برپایه ی الگوریتم پرندگان و مقایسه آن با روشهای بهینه
پایان نامه کنترل بهینه فیدبک حالت نوعی از آونگ وارون برپایه ی الگوریتم پرندگان و مقایسه آن با روشهای بهینه |
![]() |
دسته بندی | برق ،الکترونیک و مخابرات |
فرمت فایل | |
حجم فایل | 4010 کیلو بایت |
تعداد صفحات فایل | 125 |
پایان نامه کنترل بهینه فیدبک حالت نوعی از آونگ وارون برپایه ی الگوریتم پرندگان و مقایسه آن با روشهای بهینه
چکیده:
در این پایان نامه، با در نظر گرفتن چند معیار مهم در طراحی کنترل کننده ها، از قبیل محل قرارگیری قطب های حلقه بسته و سرعت پاسخ دهی و بیشینه نیروی کنترلی و ادغام آن ها در قالب یک تابع هدف، مسأله پیدا کردن ماتریس های وزنی برای کنترل کننده LQR، به صورت یک مسأله بهینه سازی فرمول بندی شده است. سپس با استفاده از الگوریتم ژنتیک و بهینه سازی ازدحام ذرات یا PSO، الگوریتم تکامل تفاضلی، الگوریتم رقابت استعماری مقادیر بهینه ماتریس های وزنی محاسبه شده اند. روش مذکور بر روی سیستم پاندول معکوس دورانی اعمال شده است. نتایج شبیه سازی برتری چشم گیر روش بهینه سازی ازدحام ذرات را بر سایر الگوریتم های بهینه سازی بیان می دارد.
مقدمه:
کنترل بهینه شامل مجموعه ای از روش ها و ابزارهای ریاضی است که برای طراحی کنترل کننده های سیستم های دینامیکی مورد استفاده قرار می گیرند و در این روش ها، معیاری برای بهینگی در نظر گرفته می شود، و در طراحی کنترل کننده مورد نظر، این معیار بهینه می شود. غالبا معیار بهینگی در ارتباط با عواملی همچون عملکرد، میزان مصرف انرژی کنترلی، زمان پاسخگویی، و چگونگی حالت نهایی تعریف می شود. به عنوان مثال، طراحی کنترل کننده ای که بتواند در کمترین زمان ممکن حالت یک سیستم دینامیکی را به یک حالت مطلوب برساند، مسأله ای است که می تواند در قالب یک مسأله کنترل بهینه تعریف شود.
تنظیم کننده درجه دوخطی یا LQR، رویکردی است که در طراحی کنترل کننده خطی برای سیستم های خطی، به وفور مورد استفاده قرار می گیرد. کنترل کننده LQR دارای قوام مناسبی است و دارای حداقل حد بهره 6- دسیبل، حداکثر حد بهره نامحدود، و حد فاز 60 درجه است. گزینه های تنظیمی مربوط به کنترل کننده LQR شامل ماتریس های وزنی موجود در تعریف معیار بهینگی است که تعیین این ماتریس ها بسته به سلیقه طراح است. مقادیر این ماتریس ها به طور مستقیم بر روی کنترل کننده بهینه به دست آمده در روش LQR تاثیر دارند. بر روی چگونگی تاثیر مقادیر ماتریس های وزنی بر کیفیت کنترل کننده LQR به دست آمده، بحث های فراوانی انجام شده است که غالبا با نام اختصاصی ساختار ویژه در حوزه کنترل بهینه مطرح شده است.
در کنار الگوریتم ها و روش های کلاسیک که برای حل مسأله وزن دهی بهینه و تعیین ساختار ویژه کنترل کننده LQR ارائه شده اند، الگوریتم های بهینه سازی هوشمند و روش های محاسبات نرم نیز به مرور در حل این مسأله، مورد استفاده قرار گرفته اند. به عنوان مثال، الگوریتم ژنتیک، ترکیب الگوریتم ژنتیک و شبیه سازی تبرید، و الگوریتم مورچه ها برای حل مسأله تخصیص ساختار ویژه مورد استفاده قرار گرفته اند.
فصل اول
کلیات
1-1- هدف و اهمیت مسأله
در طراحی بسیاری از سیستم ها و حل بسیاری از مسایل نیاز داریم که از بین مجموعه وسیعی از جواب های ممکن یک جواب را به عنوان پاسخ بهینه انتخاب نماییم. اما به علت وسعت زیاد مجموعه جواب ها عملاً نمی توان تمام پاسخ ها را آزمود و باید این آزمایش را به صورت تصادفی انجام داد. از طرف دیگر این روند تصادفی باید به گونه ای انجام شود که به سمت بهترین جواب همگرا گردد. تئوری کنترل بهینه کوادرتیک خطی به این علت که به راحتی قابل پیاده سازی در مسائل مهندسی است و مبنای سایر تئوری های کنترلی می باشد، دارای اهمیت ویژه است. با این وجود در مورد خاصی که تابع هزینه یک تابع کوادرتیک خطی است، پاسخ بهینه به پاسخ رگولاتور کوادرتیک خطی همگرا می شود. روش LQR به طور گسترده در زمینه های مانند کنترل موتورهای القایی، کنترل میلنگ خودرو و غیره کاربرد دارد. سیستم مورد بررسی در این پروژه، نوعی از آونگ وارون می باشد.
آونگ وارون به طور وسیع به عنوان یک برنامه کنترلی جهت ارزیابی تئوری های کنترل مورد استفاده قرار می گیرد و یکی از سیستم های کلاسیک در دینامیک و کنترل است که به واسطه خواصی از قبیل غیرخطی بودن و ناپایداری ذاتی به عنوان یکی از مشکل ترین مسایل در مهندسی کنترل شناخته شده و به صورت وسیعی به عنوان یک محک برای تست الگوریتم های کنترل متفاوت مانند کنترل کننده های کلاسیک PID، شبکه های عصبی، کنترل کننده های فازی و… به کار می رود. از این سیستم شکل های مختلفی وجود دارد که از بین آنها می توان به ارابه، آونگ و آونگ های چرخشی افقط و عمودی اشاره کرد. هریک از اشکال مختلف آونگ وارون می تواند به صورت آونگ تکی و یا چندگانه وجود داشته باشد. این سیستم به عنوان یکی از سیستم های پایه آزمایشگاه های کنترل شناخته می شود.
در این پروژه به طراحی کنترلر LQR برای سیستم مورد نظر می پردازیم و با استفاده از الگوریتم بهینه سازی ازدحام ذرات ماتریس های وزنی مناسب به منظور طراحی کنترلر LQR مطلوب انتخاب می نماییم. و آن را با دیگر روش های بهینه سازی معمول مقایسه می نماییم. مسئله اساسی اینست که بهترین ماتریس های وزنی را چنان تعیین کنیم که وضعیت مطلوب سیستم کنترلی را در کمترین زمان ممکن برآورده سازند. در این پروژه استفاده از روش الگوریتم بهینه سازی ازدحام ذرات برای تعیین ماتریس های وزنی پیشنهاد می شود و نشان خواهیم داد که نتایج به دست آمده نیازهای سیستم کنترلی و مشخصات مطلوب سیستم را برآورده می سازند و برتری های روش مذکور را بر الگوریتم های بهینه سازی دیگر بررسی خواهیم کرد.